Русскоязычная документация по Ubuntu. Типы виртуализации: OVZ и KVM Настройка виртуальной машины kvm в linux

KVM - одна из новых технологий виртуализации, которая дает возможность установить на физическом выделенном сервере несколько виртуальных выделенных серверов. Главным достоинством данной системы виртуализации является создание впс с разными типами операционных систем, то есть можно на одном сервере без проблем устанавливать как linux vps так и windows vps. К тому же каждый отдельный впс сервер на платформе KVM имеет свои независимые ресурсы: свое дисковое пространство, свою оперативную память, сетевой интерфейс и так далее.

Достоинства KVM виртуализации:

  • Возможность установить разные операционные системы: centos, debian, ubuntu, mint, freebsd, windows 7, windows 8, windows 10, windows xp и так далее.
  • Гарантированные ресурсы на сервере, то есть если вы заказали впс сервер с определенными ресурсами, то будьте спокойны, ресурсы у вас никто не отберет. С данной виртуализацией нельзя использовать ресурсы соседней впс. Есть такое понятие как оверселлинг, это когда хостинг компания продает больше ресурсов, чем есть на самом деле на сервере. В KVM такого не может быть, все ресурсы четко зафиксированы в конфигурационных файлах и направлены сразу все на виртуальный выделенный сервер.
  • Есть возможность установить на впс сервере полностью свою операционную систему, например вы разработчик ОС, и у вас есть своя написанная операционная система, вы можете установить ее на одной из впс на сервере с KVM, для этого нужно будет закачать файл с iso-образом ОС на сервер с специальную папку.
  • Удобная работа с VNC , которая дает возможность удаленно управлять вашим vps сервером так, как будто вы работаете за своим персональным ПК, с помощью VNC вы можете настраивать bios, перегружать впс и наблюдать это. Если вы установили на всп сервер windows и хотите на него зайти поработать в графическом режиме, то вы можете сделать это двумя способами: через VNC, или сразу попасть на впс по предварительно настроенному удаленному рабочему столу.

Из недостатков KVM виртуализации можно выделить то, что она сложнее в использовании и настройке чем, например, виртуализация openVZ . То какой вариант? Если вы планируете использовать впс сервер с операционными системами linux - тогда советуем выбрать openVZ. Если же собираете использовать на своем виртуальном выделенном сервере windows - то тогда лучше использовать именно KVM виртуализацию.

Please enable JavaScript to view the comments powered by Disqus.
Недавние записи
  • Применение новейших пассажирских и грузовых подъемников разрешает предоставить оптимальные обстоятельства…

  • Дабы ваш веб-сайт постоянно открывался по неопасному https:// протоколу, мы…

  • В новых версиях браузера Chrome перестала работать прокрутка страницы колесиком…

  • Интернет торговля в Украине с каждым годом набирает все больше…

  • ПВТ - это такое IT направление в Белоруссии, которое создано…

  • В Украине, а именно в Днепропетровске изобрели и протестировали 1-й…

  • Сейчас уже тяжело представить себе мир без ИТ, так как…

  • Предлагаем вашему вниманию новую услугу на сайте abcname.com.ua. Кроме того,…

  • Сегодня мы расскажем вам об особенностях выбора VPS сервера. Сперва…

  • Сегодня мы спешим обрадовать всех новой возможностью нашего уникального, и…

  • 1) Проверка доменного имени Проверяем, является ли строка правильным доменным…

  • Проверить IP-адрес можно на данной странице: http://abcname.com.ua/index.php?c=192 IP-адрес (если дословно, то…

  • Компания ABCname представляет вашему вниманию программу СИНОНИМИЗАТОР. Ссылка на синонимизатор: https://abcname.net/news-new/sinonimizator-ru.html…

  • Скачать счетчик посещений, разработанный компанией ABCname вы можете зайдя по данной ссылке: http://abcname.com.ua/stat/…

  • В последнем обновлении операционной системы iOS 9.0.2 разработчики закрыли очень…

  • Последние новости Skype: для пользователей данной программы на Windows…

  • Компания Google вновь порадовала своим изобретением, на днях в городе…

  • На днях стало известно, что компания Samsung запускает новую платежную…

  • В новых ноутбуках ThinkPad от компании Lenovo, на которых предустановлена…

  • Недавно компания Pebble разработала новую серию умных часов под…

  • Допустим ты молодой, но всё ещё бедный студент, А значит из всех возможных платформ ты имеешь лишь ПК на Windows и PS4. В один прекрасный день ты решаешься взяться за ум и стать программистом, но мудрые люди в интернете сообщили тебе, что нормальным инженером без Linux не стать. Установить Fedora своей основной и единственной системой ты не можешь, потому что Windows всё ещё нужен для игр и вконтактика, а установить Linux второй системой на жёсткий диск тебе мешает страх или отсутствие опыта.

    Или вот, допустим, ты уже вырос, теперь ты главный по серверам в большой компании, и в один прекрасный день ты замечаешь, что большая часть серверов не загружена даже наполовину. Разместить больше приложений и данных на серверах ты не можешь из соображений безопасности, а затраты на поддержку и содержание растущей фермы серверов стремительно увеличиваются.

    Или, вот скажем, у тебя уже борода и очки, ты технический директор, и тебя не устраивает, что чтобы разработчики получили для развёртывания нового приложения новый сервер нужно ждать аж два месяца. Как в таких условиях быстро двигаться вперёд?

    А, может, ты и вовсе архитектор, который спроектировал новую сложную систему для обработки бизнес аналитики. В систему твою входят такие вещи, как ElasticSearch, Kafka, Spark и много чего ещё, и каждый компонент должен жить отдельно, настраиваться по уму и общаться с другими компонентами. Как хороший инженер, ты понимаешь, что недостаточно просто установить весь этот зоопарк прямо себе на систему. Нужно попробовать развернуть максимально близкое к будущему production окружение, и желательно так, чтобы твои наработки потом бесшовно заработали на production серверах.

    И что же делать во всех этих непростых ситуациях? Правильно: использовать виртуализацию.

    Виртуализация как раз и позволяет устанавливать множество полностью изолированных друг от друга и работающих бок о бок операционных систем на одном и том же железе.

    Немного истории. Первые технологии виртуализации появились аж в 60-ых годах, однако настоящая нужда в них появилась только в 90-ых, по мере всё большего роста количества серверов. Именно тогда возникла проблема эффективной утилизации всех железок, а также оптимизации процессов обновления, развёртывания приложений, обеспечения безопасности и восстановления систем в случае какой-нибудь катастрофы.

    Оставим за кадром долгую и мучительную историю развития различных технологий и методов виртуализации - для любопытного читателя в конце статьи найдутся дополнительные материалы на эту тему. Важно то, к чему в итоге всё это пришло: к трём основным подходам к виртуализации.

    Подходы к виртуализации

    Независимо от подхода и технологии, при использовании виртуализации всегда существует host-машина и установленный на ней гипервизор, управляющий guest-машинами.

    В зависимости от используемой технологии, гипервизор может быть как отдельным ПО, устанавливаемым прямо на железо, так и частью операционной системы.

    Внимательный читатель, любящий модные словечки, через пару параграфов начнёт бурчать, что его любимые Docker-контейнеры тоже считаются виртуализацией. Мы поговорим о технологиях контейнеров в другой раз, но да, ты прав, внимательный читатель, контейнеры тоже в каком-то роде виртуализация, только на уровне ресурсов одной и той же операционной системы.

    Существует три способа взаимодействия виртуальных машин с железом:

    Динамическая трансляция

    В этом случае виртуальные машины не имеют ни малейшего понятия, что они - виртуальные. Гипервизор перехватывает на лету все команды от виртуалки и обрабатывает их, заменяя на безопасные, а затем возвращает назад в виртуалку. Такой подход, очевидно, страдает некоторыми проблемами с производительностью, но зато позволяет виртуализировать любую ОС, так как гостевая ОС не нуждается в модификации. Динамическая трансляция используется в продуктах VMWare - лидере коммерческого ПО для виртуализации.

    Паравиртуализация

    В случае с паравиртуализацией исходный код гостевой ОС специально изменяется так, чтобы все инструкции выполнялись максимально эффективно и безопасно. При этом виртуалка всегда в курсе, что она - виртуалка. Из плюсов - улучшенная производительность. Из минусов - таким образом нельзя виртуализовать, например, MacOS или Windows, или любой другую ОС, к исходникам которой нет доступа. Паравиртуализация в той или иной форме используется, например, в Xen и KVM.

    Аппаратная виртуализация

    Разработчики процессоров вовремя осознали, что архитектура x86 плохо подходит для виртуализации, так как изначально была заточена под одну ОС за раз. Поэтому, уже после того как появились динамическая трансляция от VMWare и паравиртуализация от Xen, Intel и AMD начали выпускать процессоры с аппаратной поддержкой виртуализации.

    Особого прироста производительности это поначалу не дало,так как главным фокусом первых релизов было улучшение архитектуры процессоров. Однако, теперь, спустя больше 10 лет после появления Intel VT-x и AMD-V, аппаратная виртуализация ничем не уступает и даже в чём-то превосходит другие решения.

    Аппаратную виртуализацию использует и требует KVM (Kernel-based Virtual Machine), которую мы и будем использовать в дальнейшем.

    Kernel-based Virtual Machine

    KVM - это решение для виртуализации, встроенное прямо в ядро Linux, не уступающее остальным решениям в функциональности и превосходящее их в удобстве использования. Более того, KVM - open source технология, которую, тем не менее, на всех парах двигает вперёд (как в плане написания кода, так и в плане маркетинга) и внедряет в свои продукты Red Hat.

    Это, кстати, одна из многих причин, почему мы настаиваем на Red Hat дистрибутивах.

    Создатели KVM изначально сфокусировались на поддержке аппаратной виртуализации и не стали переизобретать многие вещи. Гипервизор, по сути, это маленькая операционная система, которая должна уметь работать с памятью, с сетью и т.п. Linux уже отлично умеет всё это делать, поэтому использование ядра Linux в качестве гипервизора - логичное и красивое техническое решение. Каждая виртуальная машина KVM -это всего лишь отдельный Linux процесс, безопасность обеспечивается при помощи SELinux/sVirt, ресурсы управляются при помощи CGroups.

    Мы ещё поговорим о SELinux и CGroups в другой статье, не пугайся, если не знаешь таких слов.

    KVM не просто работает как часть ядра Linux: начиная с версии ядра 2.6.20 KVM является основной составляющей Linux. Иными словами, если у вас стоит Linux, то у вас уже есть KVM. Удобно, правда?

    Стоит сказать, что в сфере публичных облачных платформ Xen доминирует чуть больше, чем полностью. Например, AWS EC2 и Rackspace используют именно Xen. Обусловлено это тем, что Xen появился раньше всех и первый достиг достаточного уровня производительности. Но есть и хорошие новости: в ноябре 2017 , который постепенно заменит Xen для крупнейшего облачного провайдера.

    Несмотря на то, что KVM использует аппаратную виртуализацию, для некоторых драйверов I/O устройств KVM может использовать паравиртуализацию, что обеспечивает прирост производительности для определённых сценариев использования.

    libvirt

    Мы уже почти дошли до практической части статьи, осталось только рассмотреть ещё один open source инструмент: libvirt.

    libvirt - это набор инструментов, предоставляющий единый API к множеству различных технологий виртуализации. Используя libvirt вам впринципе без разницы, что там за “бакенд”: Xen, KVM, VirtualBox или что-то ещё. Более того, можно использовать libvirt внутри Ruby (а ещё Python, C++ и много чего ещё) программ. Ещё можно удалённо по защищённым каналам подключаться к виртуальным машинам.

    Разработкой libvirt, кстати, занимается Red Hat. Ты уже установил себе Fedora Workstation основной системой?

    Создадим виртуалку

    libvirt - это просто API, а вот как с ним взаимодействовать решать пользователю. Вариантов куча . Мы воспользуемся несколькими стандартными утилитами. Напоминаем: мы настаиваем на использовании Red Hat дистрибутивов (CentOS, Fedora, RHEL) и команды ниже были протестированы именно на одной из этих систем. Для других дистрибутивов Linux возможны небольшие отличия.

    Сначала проверим, поддерживается ли аппаратная виртуализация. На самом деле, работать будет и без её поддержки, только гораздо медленнее.

    egrep --color = auto "vmx|svm|0xc0f" /proc/cpuinfo # если не выведется ничего, значит поддержки нет:(

    Так как KVM то модуль ядра Linux, то нужно проверить, загружен ли он уже, и если нет, то загрузить.

    lsmod | grep kvm # kvm, kvm_intel, kvm_amd. Если ничего не выводит, значит, нужно загрузить нужные модули # Если модуль не загружен modprobe kvm modprobe kvm_intel # или modprobe kvm_amd

    Возможна ситуация, что аппаратная виртуализация выключена в BIOS. Поэтому если модули kvm_intel/kvm_amd не подгружаются, то проверь настройки BIOS.

    Теперь установим необходимые пакеты. Проще всего сделать это, установив сразу группу пакетов:

    yum group list "Virtual*"

    Список групп зависит от используемой ОС. У меня группа называлась Virtualization . Для управления виртуальными машинами из командой строки используется утилита virsh . Проверь, есть ли у тебя хотя бы одна виртуалка командой virsh list . Скорее всего нет.

    Если не нравится командная строка, то ещё есть virt-manager - весьма удобный GUI для виртуалок.

    virsh умеет создавать виртуалки только из XML файлов, формат которых можно изучить в документации libvirt . К счастью, ещё есть virt-manager и команда virt-install . С GUI ты и сам разберёшься, а вот пример использования virt-install:

    sudo virt-install --name mkdev-vm-0 \ --location ~/Downloads/CentOS-7-x86_64-Minimal-1511.iso \ --memory = 1024 --vcpus = 1 \ --disk size = 8

    Вместо указания размера диска, можно создать его заранее через virt-manager, или через virsh и XML файл. Я использовал выше образ с Centos 7 minimal, который легко найти на сайте Centos .

    Теперь остаётся один важный вопрос: как подсоединиться к созданной машине? Проще всего это сделать через virt-manager - достаточно дважды кликнуть по созданной машине и откроется окно с SPICE соединением. Там тебя ждёт экран установки ОС.

    Кстати, KVM умеет nested virtualization: виртуалки внутри виртуалку. We need to go deeper!

    После того, как ты установишь ОС вручную, ты сразу задашься вопросом, как этот процесс можно автоматизировать. Для этого нам понадобится утилита под названием Kickstart , предназначенная для автоматической первичной настройки ОС. Это простой текстовый файлик, в котором можно указать конфигурацию ОС, вплоть до различных скриптов, выполняемых уже после установки.

    Но где взять такой файл? Не писать же его с нуля? Разумеется, нет: так как мы уже установили внутри нашей виртуалки Centos 7, то нам нужно просто подсоединиться к ней и найти файл /root/anaconda-ks.cfg - это Kickstart конфиг для того, чтобы создать копию уже созданной ОС. Нужно просто скопировать его и отредактировать содержимое.

    Но просто скопировать файл скучно, поэтому мы добавим в него ещё кое-что. Дело в том, что по умолчанию у нас не получится подсоединиться к консоли созданной виртуалки из командой строки host-машины. Чтобы сделать это, нужно отредактировать конфиг загрузчика GRUB. Поэтому в самый конец Kickstart файла добавим следующую секцию:

    %post --log = /root/grubby.log /sbin/grubby --update-kernel = ALL --args = "console=ttyS0" %end

    %post , как не сложно догадаться, выполнится после установки ОС. Команда grubby обновит конфиг GRUB, добавив возможность подключаться к консоли.

    Кстати, ещё можно указать возможность подключения через консоль прямо во время создания виртуалки. Для этого в команду virt-install нужно передать ещё один аргумент: --extra-args="console=ttyS0" . После этого можно устанавливать саму ОС в интерактивном текстовом режиме из терминала твоей host машины, подключившись к виртуалке через virsh console сразу после её создания. Это особенно удобно, когда создаёшь виртуалки на железном удалённом сервере.

    Теперь можно применить созданный конфиг! virt-install позволяет при создании виртуалки передавать дополнительные аргументы, в том числе путь к Kickstart файлу.

    sudo virt-install --name mkdev-vm-1 \ --location ~/Downloads/CentOS-7-x86_64-Minimal-1511.iso \ --initrd-inject /path/to/ks.cfg \ --extra-args ks = file:/ks.cfg \ --memory = 1024 --vcpus = 1 --disk size = 8

    После того, как вторая виртуалка будет создана (полностью автоматически), ты сможешь подключиться к ней из командой строки командой virsh console vm_id . vm_id можно узнать из списка всех виртуалок командой virsh list .

    Одно из преимуществ использования KVM/libvirt - потрясающая документация, в том числе создаваемая компанией Red Hat . Дорогому читателю предлагается с должной любознательностью изучить её.

    Конечно, создавать виртуальные машины вот так вот руками в консоли, а потом настраивать их только при помощи Kickstart - не самый удобный процесс. В будущих статьях мы ознакомимся с множеством классных инструментов, облегчающих и полностью автоматизирующих конфигурацию систем.

    Что дальше?

    Невозможно уместить в одну статью всё, что стоит знать о виртуализации. Мы рассмотрели несколько вариантов использования виртуализации и её преимущества, немного углубились в детали её работы и познакомились с лучшим, на наш взгляд, решением для этих задач (KVM), и даже создали и настроили виртуалку.

    Важно понять, что виртуальные машины - кирпичи в огромных зданиях современных облачных архитектур. Именно они позволяют приложениям автоматически разрастаться до безграничных размеров, максимально быстрым способом и с максимальной утилизацией всех ресурсов.

    Каким бы мощным и богатым на сервисы не был AWS, его основа - это виртуальные машины поверх Xen. Каждый раз, когда ты создаёшь новый дроплет на DigitalOcean , ты создаёшь виртуалку. Практически все сайты, которыми ты пользуешься, размещены на виртуальных машинах. Простота и гибкость виртуалок позволяет не только строить production-системы, но и в десятки раз облегчает локальную разработку и тестирование, особенно когда в системе задействовано множество компонентов.

    Мы научились создавать одну единственную машинку - неплохо для тестирования одного приложения. Но что, если нам нужно сразу несколько виртуальных машин? Как они будут общаться друг с другом? Как они будут находить друг друга? Для этого нам нужно будет разобраться, как вообще работают сети, как они работают в контексте виртуализации, и какие компоненты задействованы в этой работе и нуждаются в настройке - в следующей статье серии.

    В жизни сисадмина однажды настает момент, когда приходится с нуля разворачивать инфраструктуру предприятия либо переделывать уже имеющуюся, перешедшую по наследству. В этой статье я расскажу о том, как правильно развернуть гипервизор на основе Linux KVM и libvirt c поддержкой LVM (логических групп).

    Мы пройдемся по всем тонкостям управления гипервизором, включая консольные и GUI-утилиты, расширение ресурсов и миграцию виртуальных машин на другой гипервизор.

    Для начала разберемся с тем, что такое виртуализация. Официальное определение звучит так: «Виртуализация - это предоставление набора вычислительных ресурсов или их логического объединения, абстрагированное от аппаратной реализации и обеспечивающее при этом логическую изоляцию друг от друга вычислительных процессов, выполняемых на одном физическом ресурсе». То есть, если выражаться человеческим языком, имея один мощный сервер, мы можем превратить его в несколько средних серверов, и каждый из них будет выполнять свою задачу, отведенную ему в инфраструктуре, не мешая при этом другим.

    Системные администраторы, работающие вплотную с виртуализацией на предприятии, мастера и виртуозы своего дела, поделились на два лагеря. Одни - приверженцы высокотехнологичной, но безумно дорогой VMware для Windows. Другие - любители open source и бесплатных решений на основе Linux VM. Можно долго перечислять преимущества VMware, но здесь мы остановимся на виртуализации, основанной на Linux VM.

    Технологии виртуализации и требования к железу

    Сейчас есть две популярные технологии виртуализации: Intel VT и AMD-V. В Intel VT (от Intel Virtualization Technology) реализована виртуализация режима реальной адресации; соответствующая аппаратная виртуализация ввода-вывода называется VT-d. Часто эта технология обозначается аббревиатурой VMX (Virtual Machine eXtension). В AMD создали свои расширения виртуализации и первоначально называли их AMD Secure Virtual Machine (SVM). Когда технология добралась до рынка, она стала называться AMD Virtualization (сокращенно AMD-V).

    Перед тем как вводить аппаратное обеспечение в эксплуатацию, убедись, что оборудование поддерживает одну из этих двух технологий (посмотреть можно в характеристиках на сайте производителя). Если поддержка виртуализации имеется, ее необходимо включить в BIOS перед развертыванием гипервизора.

    Среди других требований гипервизоров - поддержка аппаратного RAID (1, 5, 10), которая повышает отказоустойчивость гипервизора при выходе жестких дисков из строя. Если поддержки аппаратного RAID нет, то можно использовать программный на крайний случай. Но RAID - это мастхэв!

    Решение, описанное в этой статье, несет на себе три виртуальные машины и успешно работает на минимальных требованиях: Core 2 Quad Q6600 / 8 Гбайт DDR2 PC6400 / 2 × 250 Гбайт HDD SATA (хардверный RAID 1).

    Установка и настройка гипервизора

    Я покажу, как настраивать гипервизор, на примере Debian Linux 9.6.0 - Х64-86. Ты можешь использовать любой дистрибутив Linux, который тебе по душе.

    Когда ты определишься с выбором железа и его наконец-то привезут, придет время ставить гипервизор. При установке ОС все делаем, как обычно, за исключением разметки дисков. Неопытные администраторы часто выбирают опцию «Автоматически разбить все дисковое пространство без использования LVM». Тогда все данные будут записаны на один том, что нехорошо по нескольким причинам. Во-первых, если жесткий диск выйдет из строя, ты потеряешь все данные. Во-вторых, изменение файловой системы доставит массу хлопот.

    В общем, чтобы избежать лишних телодвижений и потери времени, рекомендую использовать разметку диска с LVM.

    Logical Volume Manager

    Менеджер логических томов (LVM) - это подсистема, доступная в Linux и OS/2, построенная поверх Device Mapper. Ее задача - представление разных областей с одного жесткого диска или областей с нескольких жестких дисков в виде одного логического тома. LVM создает из физических томов (PV - Phisical Volumes) логическую группу томов (VG - Volumes Group). Она, в свою очередь, состоит из логических томов (LV - Logical Volume).

    Сейчас во всех дистрибутивах Linux с ядром 2.6 и выше есть поддержка LVM2. Для использования LVM2 на ОС с ядром 2.4 надо устанавливать патч.

    После того как система обнаружила жесткие накопители, запустится менеджер разбивки жестких дисков. Выбираем пункт Guided - use entire disk and set up LVM.


    Теперь выбираем диск, на который будет установлена наша группа томов.



    Система предложит варианты разметки носителя. Выбираем «Записать все файлы на один раздел» и идем дальше.




    После сохранения изменений мы получим одну логическую группу и два тома в ней. Первый - это корневой раздел, а второй - это файл подкачки. Тут многие зададут вопрос: а почему не выбрать разметку вручную и не создать LVM самому?

    Я отвечу просто: при создании логической группы VG загрузочный раздел boot не пишется в VG, а создается отдельным разделом с файловой системой ext2. Если этого не учесть, то загрузочный том окажется в логической группе. Это обречет тебя на мучения и страдания при восстановлении загрузочного тома. Именно поэтому загрузочный раздел отправляется на том без LVM.



    Переходим к конфигурации логической группы для гипервизора. Выбираем пункт «Конфигурация менеджера логических томов».



    Система оповестит о том, что все изменения будут записаны на диск. Соглашаемся.



    Создадим новую группу - к примеру, назовем ее vg_sata .



    INFO

    В серверах используются носители SATA, SSD, SAS, SCSI, NVMe. Хорошим тоном при создании логической группы будет указывать не имя хоста, а тип носителей, которые используются в группе. Советую логическую группу назвать так: vg_sata , vg_ssd , vg_nvme и так далее. Это поможет понять, из каких носителей построена логическая группа.




    Создаем наш первый логический том. Это будет том для корневого раздела операционной системы. Выбираем пункт «Создать логический том».



    Выбираем группу для нового логического тома. У нас она всего одна.



    Присваиваем имя логическому тому. Правильнее всего при назначении имени будет использовать префикс в виде названия логической группы - например, vg_sata_root , vg_ssd_root и так далее.



    Указываем объем для нового логического тома. Советую выделить под корень 10 Гбайт, но можно и меньше, благо логический том всегда можно расширить.



    По аналогии с примером выше создаем следующие логические тома:

    • vg_sata_home - 20 Гбайт под каталоги пользователей;
    • vg_sata_opt - 10 Гбайт для установки прикладного ПО;
    • vg_sata_var - 10 Гбайт для часто меняющихся данных, к примеру логов системы и других программ;
    • vg_sata_tmp - 5 Гбайт для временных данных, если объем временных данных велик, можно сделать и больше. В нашем примере этот раздел не создавался за ненадобностью;
    • vg_sata_swap - равен объему оперативной памяти. Это раздел для свопа, и создаем мы его для подстраховки - на случай, если закончится оперативная память на гипервизоре.

    После создания всех томов завершаем работу менеджера.



    Теперь имеем несколько томов для создания разделов операционной системы. Нетрудно догадаться, что для каждого раздела есть свой логический том.



    Создаем одноименный раздел под каждый логический том.



    Сохраняем и записываем проделанные изменения.



    После сохранения изменений разметки диска начнут ставиться базовые компоненты системы, а затем будет предложено выбрать и установить дополнительные компоненты системы. Из всех компонентов нам понадобится ssh-server и стандартные системные утилиты.



    После установки будет сформирован и записан на диск загрузчик GRUB. Устанавливаем его на тот физический диск, где сохранен загрузочный раздел, то есть /dev/sda .




    Теперь ждем, пока закончится запись загрузчика на диск, и после оповещения перезагружаем гипервизор.





    После перезагрузки системы заходим на гипервизор по SSH. Первым делом под рутом устанавливаем нужные для работы утилиты.

    $ sudo apt-get install -y sudo htop screen net-tools dnsutils bind9utils sysstat telnet traceroute tcpdump wget curl gcc rsync

    Настраиваем SSH по вкусу. Советую сразу сделать авторизацию по ключам. Перезапускаем и проверяем работоспособность службы.

    $ sudo nano /etc/ssh/sshd_config $ sudo systemctl restart sshd; sudo systemctl status sshd

    Перед установкой софта для виртуализации необходимо проверить физические тома и состояние логический группы.

    $ sudo pvscan $ sudo lvs

    Устанавливаем компоненты виртуализации и утилиты для создания сетевого моста на интерфейсе гипервизора.

    $ sudo apt-get update; apt-get upgrade -y $ sudo apt install qemu-kvm libvirt-bin libvirt-dev libvirt-daemon-system libvirt-clients virtinst bridge-utils

    После установки настраиваем сетевой мост на гипервизоре. Комментируем настройки сетевого интерфейса и задаем новые:

    $ sudo nano /etc/network/interfaces

    Содержимое будет примерно таким:

    Auto br0 iface br0 inet static address 192.168.1.61 netmask 255.255.255.192 gateway 192.168.1.1 broadcast 192.168.0.61 dns-nameserver 127.0.0.1 dns-search сайт bridge_ports enp2s0 bridge_stp off bridge_waitport 0 bridge_fd 0

    Добавляем нашего пользователя, под которым будем работать с гипервизором, в группы libvirt и kvm (для RHEL группа называется qemu).

    $ sudo gpasswd -a iryzhevtsev kvm $ sudo gpasswd -a iryzhevtsev libvirt

    Теперь необходимо инициализировать нашу логическую группу для работы с гипервизором, запустить ее и добавить в автозагрузку при запуске системы.

    $ sudo virsh pool-list $ sudo virsh pool-define-as vg_sata logical --target /dev/vg_sata $ sudo virsh pool-start vg_sata; sudo virsh pool-autostart vg_sata $ sudo virsh pool-list

    INFO

    Для нормальной работы группы LVM с QEMU-KVM требуется сначала активировать логическую группу через консоль virsh .

    Теперь скачиваем дистрибутив для установки на гостевые системы и кладем его в нужную папку.

    $ sudo wget https://mirror.yandex.ru/debian-cd/9.5.0/amd64/iso-cd/debian-9.5.0-amd64-netinst.iso $ sudo mv debian-9.5.0-amd64-netinst.iso /var/lib/libvirt/images/; ls -al /var/lib/libvirt/images/

    Чтобы подключаться к виртуальным машинам по VNC, отредактируем файл /etc/libvirt/libvirtd.conf:

    $ sudo grep "listen_addr = " /etc/libvirt/libvirtd.conf

    Раскомментируем и изменим строчку listen_addr = "0.0.0.0" . Сохраняем файл, перезагружаем гипервизор и проверяем, все ли службы запустились и работают.

    Продолжение доступно только участникам

    Вариант 1. Присоединись к сообществу «сайт», чтобы читать все материалы на сайте

    Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score!

    Гипервизоры (технологии виртуализации) существуют более 30 лет и за это время сумели стать одним из главных «винтиков» в составе облачной экосистемы. Многие компании, подбирающие решения для виртуализации, останавливают свой выбор на двух популярных гипервизорах - VMware и KVM. Предлагаем разобраться какой же из них лучше. Но для начала немного теории.

    Что такое гипервизор?

    Гипервизор - это программа, отделяющая операционную систему от железа. Гипервизоры виртуализируют ресурсы сервера (процессор, память, диск, сетевые интерфейсы и др.), позволяя использовать их как свои собственные, и создают на основе одного сервера несколько отдельных виртуальных машин. Каждая созданная виртуальная машина изолируется от соседей, чтобы не влиять на работу других. Для работы гипервизора необходима поддержка виртуализации: для процессоров Intel на процессоре Intel VT, а для процессоров AMD на AMD-V.

    Гипервизоры делятся на два типа: первые работают непосредственно с сервером, а операционная система пользователей работает поверх гипервизора. Эти гипервизоры могут предоставлять некоторым пользователям функции управления сервером и большинство предприятий используют именно такие гипервизоры.

    Гипервизоры второго типа, также известные как размещенные гипервизоры (Hosted Hypervisor), работают с операционной системой, установленной на сервере. А операционные системы для новых пользователей создаются поверх гипервизора.

    Настольные гипервизоры, такие как Oracle VirtualBox или VMware Workstation, являются гипервизорами второго типа, а VMware и KVM – первого. VMware и KVM устанавливаются непосредственно на сервер и не требуют установки какой-либо операционной системы.

    VMware vSphere

    Перед покупкой VMware vSphere можно попробовать поработать в пробной версии (60 дней), после чего необходимо покупать лицензию, либо мириться с ограничениями бесплатной версии.

    В бесплатной версии, которая называется VMware Free vSphere Hypervisor, нет ограничений для хоста по процессорам и памяти, зато есть ряд других:

    • API продукта доступно только для чтения;
    • виртуальная машина не может иметь более 8 ядер;
    • ее нельзя использовать вместе с Veeam для создания резервных копий;
    • подключение к vCenter Server не поддерживается;
    • не поддерживается и высокая доступность, а также технологии VM Host Live Migration и VM Storage Live Migration.

    Продукт от VMware отличается от аналогов поддержкой большого количества операционных систем - Windows, Linux, Solaris, FreeBSD, Netware, MacOS и других.

    Установка дистрибутива VMware на сервер очень проста: достаточно загрузиться с CD, флешки или через PXE. К тому же поддерживаются сценарии, позволяющие автоматизировать процесс инсталляции программного обеспечения, настройку сети и подключения к vCenter Server.

    Немаловажно и наличие специального конвертера VMware vCenter Converter , позволяющего использовать в ESXi образы MS Virtual Server, Virtual PC, Hyper-V, а также физические серверы и образы дисковых разделов, созданных такими программами как Acronis True Image, Norton Ghost и другими.

    У VMware vSphere есть встроенная интеграция с Microsoft Active Directory, то есть аутентификацию пользователей в частном или гибридном облаке можно производить при помощи доменных служб Microsoft. Гибкое распределение ресурсов позволяет использовать горячее добавление CPU, ОЗУ и жесткого диска (в том числе изменять размер текущего жесткого диска без перезагрузки).

    VMware Fault Tolerate - технология VMware, предназначенная для защиты виртуальных машин с помощью кластеров непрерывной доступности. При отказе хоста (сервера ESXi) с основной (Primary) рабочей копией виртуальной машины, защищенная виртуальная машина мгновенно переключится на «вторичную» (Secondary) или «теневую» копию, работающую на другом сервере ESXi. Для машин, защищенных VMware Fault Tolerance, происходит постоянное (в реальном времени) копирование всего состояния памяти и процессорных инструкций с основной копии на «теневую». При сбое основного хоста ESXi, пользователи даже не заметят процесса переключения на второй узел. Именно этим Fault Tolerance отличается от High Availability. В High Availability при отказе физического сервера виртуальные машины будут перезапущены на других узлах, и пока операционные системы перезагружаются пользователи не смогут получить доступ к виртуальным серверам.

    Кроме VMware Foult Tolerate, лицензия VMware vCloud Suite Enterprise обеспечивает высокую доступность, отказоустойчивость и восстановление после аварий с помощью функций vSphere HA, vMotion, Storage vMotion, и vCenter Site Recovery Manager.

    Для уменьшения плановых остановок в обслуживании серверов или систем хранения данных (СХД), функции vMotion и Storage vMotion в онлайн-режиме переносят виртуальные машины и их диски без остановки работы приложений и пользователей. Функция vSphere Replication поддерживает разные варианты репликации vCenter Site Recovery Manager (SRM) для защиты от крупных аварий. SRM обеспечивает централизованное планирование послеаварийного восстановления, автоматические Failover и Failback с резервного сайта или из облака vCloud, а также тестирование послеаварийного восстановления без прерывания работы приложений.

    К особенностям этого гипервизора стоит отнести избирательность к железу - перед установкой необходимо тщательно проверить имеющееся оборудование на совместимость с нужной версией ESXi. Для этого на сайте VMware есть специальная .

    Лицензирование продуктов VMware имеет свои особенности. Дополнительную путаницу добавляют периодические изменения (от версии к версии vSphere) в лицензионной политике VMware. Существует несколько пунктов, которые нужно учесть перед приобретением лицензий VMware vSpere:

    • лицензирование гипервизора выполняется по числу физических процессоров (CPU). Каждый CPU сервера требует отдельной лицензии vSphere (ядра не являются физическими процессорами и не учитываются в лицензировании);
    • доступный функционал сервера ESXi определяется установленной на нем лицензией vSphere. Подробное руководство по лицензиям есть на ;
    • для каждой купленной лицензии vShpere необходимо приобретать пакет сервисной поддержки (минимум на год);
    • VMware не накладывает ограничения на количество памяти (RAM), установленной на сервере, и на количество запущенных виртуальных машин.

    Управлять множеством хостов с гипервизорами ESXi, СХД и сетевым оборудованием можно с помощью еще одного продукта VMware - Vcenter Server. Подключаемые модули клиента vSphere, предоставляемые партнерами VMware, дают IT-администраторам возможность управлять сторонними элементами в дата-центре непосредственно из этой консоли. Поэтому пользователи vCenter могут выполнять резервное копирование, защищать данные, управлять серверами, сетями и безопасностью непосредственно из интерфейса vCenter. В этой же консоли можно настроить триггеры, которые оповестят о возникших проблемах, и получить данные о работе всей инфраструктуры в виде графиков или таблиц.

    KVM

    KVM - простой в использовании, легкий, нетребовательный к ресурсам и довольно функциональный гипервизор. Он позволяет за минимальные сроки развернуть площадку виртуализации и организовать виртуализацию под управлением операционной системы Linux. В процессе работы KMV осуществляет доступ к ядру операционной системы через специальный модуль (KVM-Intel или KVM-AMD). Изначально KVM поддерживал только процессоры x86, но современные версии KVM поддерживают самые разные процессоры и гостевые операционные системы, в том числе Linux, BSD, Solaris, Windows и др. Кстати, все Wiki-ресурсы (MediaWiki, Wikimedia Foundation, Wikipedia, Wikivoyage, Wikidata, Wikiversity) используют именно этот гипервизор.

    Поскольку гостевые операционные системы взаимодействуют с гипервизором, который интегрирован в ядро Linux, у гостевых операционных систем есть возможность обращаться напрямую к оборудованию без нужды изменения гостевой операционной системы. За счет этого замедления работы гостевой операционной системы почти не происходит.

    KVM позволяет виртуальным машинам использовать немодифицированные образы дисков QEMU, VMware и другие образы, содержащие операционные системы. Каждая виртуальная машина имеет своё собственное виртуальное аппаратное обеспечение: сетевые карты, диск, видеокарту и другое железо.

    Благодаря поддержке немодифицированных образов VMware, физический сервер можно легко виртуализовать при помощи все той же утилиты VMware vServer Converter, а затем перенести полученный файл в гипервизор.

    Установка KVM в операционной системе Linux заключается в инсталляции пакета KVM и библиотеки виртуализации Libvirt, а также в тщательной настройке среды виртуализации. В зависимости от используемой на хосте операционной системы необходимо настроить мост или подключение к VNC-консоли, с помощью которой виртуальные машины будут взаимодействовать с хостом.

    Администрировать KVM сложнее, так как прозрачный доступ к файлам, процессам, консолям и сетевым интерфейсам отсутствует, это приходится настраивать самостоятельно. Перестройка параметров VM в KVM (CPU, RAM, HDD) не очень удобна и требует дополнительных действий, включающих перезагрузку ОС.

    Сам проект не предлагает удобных графических инструментов для управления виртуальными машинами, только утилиту Virsh, реализующую все необходимые функции. Для удобного управления виртуальными машинами можно дополнительно установить пакет Virt-Manager.

    У KVM нет встроенных инструментов, подобных Fault Tolerate для VMware, поэтому единственный способ создать кластер высокой доступности - использовать сетевую репликацию при помощи DRDB. Кластер DRBD поддерживает только два узла, а узлы синхронизируются без шифрования. То есть для более безопасной связи необходимо использовать VPN-соединение.

    Кроме того, для построения кластера высокой доступности понадобится программа Heartbeat, которая позволяет обмениваться служебными сообщениями о своем состоянии узлам в кластере, и Pacemaker - менеджер ресурсов кластера.

    Гипервизор KVM распространяется как продукт с открытым исходным кодом, а для корпоративных пользователей существует коммерческое решение Red Hat Virtualization (RHEL), основанное на KVM и платформе управления виртуальной инфраструктурой oVirt.

    Несомненным преимуществом этого гипервизора является то, что он способен работать на любом сервере. Гипервизор довольно неприхотлив к ресурсам, что позволяет с легкостью использовать его для задач тестирования.

    Следует учесть, что у KVM нет службы поддержки. Если что-то не получится, можно рассчитывать на форумы и помощь сообщества. Или перейти на RHEL.

    Так что же выбрать?

    Оба гипервизора являются зрелыми, надежными, высокопроизводительными системами виртуализации, у каждой из которых есть свои особенности, которые нужно учитывать при выборе.

    KVM обычно более масштабируем, чем VMware, в первую очередь потому что vSphere имеет некоторые ограничения на серверы, которыми он может управлять. Кроме того, VMware добавила большое количество сетей хранения данных (SAN) для поддержки различных поставщиков. Эта функция означает, что VMware имеет больше вариантов хранения, чем KVM, но также усложняет поддержку хранилища VMware при расширении.

    KVM обычно является наиболее популярным гипервизором для компаний, которые стремятся сократить стоимость внедрения и менее заинтересованы в функциях корпоративного уровня.

    Исследования показали, что совокупная стоимость владения KVM, как правило, на 39 процентов ниже, чем у VMware, хотя фактическая совокупная стоимость владения зависит от специфичных факторов, таких как эксплуатационные параметры и рабочая нагрузка площадки.

    Тесная интеграция с операционной системой на хосте является одной из наиболее распространенных причин, по которой разработчики выбирают KVM. Особенно те, кто использует Linux. Включение KVM во многие дистрибутивы Linux также делает его удобным выбором для разработчиков.

    Облачные провайдеры, предлагающие своим клиентам услуги по модели IaaS, обычно выбирают инфраструктуру, построенную на продуктах VMware. Решения на основе VMware Sphere содержат все важные корпоративные функции по обеспечению высокой и непрерывной доступности, обеспечивают поддержку большего числа гостевых операционных систем и имеют возможность сопряжения инфраструктуры заказчика с облачными сервисами.

    Сегодня сложно представить мир без компьютеризированных устройств. Лет этак 20 назад почти все бытовые приборы были электро-механические, об использовании компьютерных схем повсеместно не было даже и речи. Самые первые компьютеры занимали значительные объемы пространства, и могли относительно не много. Компьютерно-вычислительные комплексы за последнее время прошли достаточно большой путь развития. Хотя, принципиально компьютеры ничем не изменились, но вычислительные мощности стремительно возросли. Наличие компьютера в простой семье теперь не является чем-то особенным.

    В данный момент, зачастую большое количество компьютерной техники в помещениях может доставлять значительно неудобств. По этой причине стали появляться централизованные системы. Но централизованные системы зачастую не могут решить тех проблем, которые решает сеть из компьютеров. По этой причине и была предложена концепция виртуализации, когда один центральный компьютер выполняет роль сети компьютеров.

    По своей сути, все ОС это в общем-то и так некоторая виртуальная среда, которая предоставляется разработчику ПО, как средство реализации конечных задач. Уже давно прошло то время, когда программы писались конкретно под аппаратную часть компьютера по средствам аппаратных кодов и запросов. Сегодня же, любое приложение – это в первую очередь приложение, написанное на некотором API, который находится под управлением ОС. Задачи же ОС – предоставить данным API непосредственно доступ к аппаратным ресурсам.

    Собственно видов виртуализации существует несколько:

    • Программная виртуализация;
    • Аппаратная виртуализация;
    • Виртуализация уровня операционной системы.

    Виртуализация в свою очередь бывает полной и частичной .

    Программная виртуализация – вид виртуализации, который задействует различные библиотеки ОС, транслируя вызовы виртуальной машины в вызовы ОС. (DOSBox, Virtualbox, VirtualPC)

    Аппаратная виртуализация – такой вид, который предусматривает специализированную инструкцию аппаратной части, а конкретно инструкций процессора. Позволяет исполнять запросы в обход гостевой ОС, и исполнять прямо на аппаратном обеспечении. (виртуализация KVM,виртуализация XEN, Parallels, VMware, Virtualbox)

    Виртуализация уровня операционной системы – виртуализация только части платформы, без полной виртуализации аппаратной части. Подразумевает работы нескольких экземпляров среды ОС. (Docker, LXC)

    Данная статья будет рассматривать Аппаратную виртуализацию, а конкретно виртуализацию KVM.

    Схема 1. – Взаимодействие компонентов виртуальной машины с аппаратной частью

    Особенности виртуализации для ядра Linux

    Для исполнения прямых аппаратных запросов в ОС должна иметься библиотека, которая направляла бы эти запросы аппаратной части напрямую. На платформах базы Linux долгое время никакой встроенной системы виртуализации (встроенного гипервизора), просто не существовало. Каждый производитель ПО для виртуализации, который поддерживало технологию аппаратной виртуализации, вынуждены были создавать собственные модули для ядра Linux (vboxdrv в Virtualbox, vmware-service в VMWare и пр.) Естественно, это не могло продолжаться вечно, и компания Qumranet, Inc, выкупленая затем Radhat создала ассоциацию Open Virtualization Alliance, которая была признана решить проблему отсутствия базового гипервизора для ядра Linux. Так и был создан гипервизор KVM или Kernel-based Virtual Machine.

    Реализация

    Гипервизор KVM представляет из себя загружаемый модуль ядра Linux, который предназначен для обеспечения виртуализации на платформе Linux x86. Сам модуль содержит компонент собственно виртуализации(kvm.ko), и процессорно-специфический загружаемый модуль kvm-amd.ko либо kvm-intel.ko.

    Необходимым условием для использования KVM является поддержка инструкций виртуализации - Intel VT либо AMD , и ядро Linux версии 2.6.20 и выше. Существует также порт KVM под Free-BSD. Для вызова KVM традиционно используется QEMU, но также ведутся попытки добавить поддержку KVM в Virtualbox.

    Сам по себе KVM не выполняет эмуляции. Вместо этого программа, работающая в пространстве пользователя, использует интерфейс /dev/kvm для настройки адресного пространства гостя виртуальной машины, через него же эмулирует устройства ввода-вывода и видеоадаптер.

    KVM позволяет виртуальным машинам использовать немодифицированные образы дисков QEMU, VMware и других, содержащие операционные системы. Каждая виртуальная машина имеет своё собственное виртуальное аппаратное обеспечение: сетевые карты, диск, видеокарту и другие устройства.

    Использование

    Для использования данного гипервизора существует множество реализаций. Некоторые представляют из себя целые специализированные библиотеки, другие имеют вид простых графических приложений.

    Для наглядности рассматривается виртуализация KVM на базе библиотеку virt-manager.

    Данная библиотека позволяет упростить вызов различных гипервизоров, предоставляя удобный интерфейс для автоматизации процесса виртуализации. Кроме того, библиотека имеет возможность работы с сетевой инфраструктурой, что иногда важно, при построении клиент-серверных рабочих мест.

    Схема 2. – Взаимодействие компонентов libvirt

    QEMU позволяет создать фрейм для вызова гипервизора на клиентской системе. Данная программа настраивается аргументами вызова командной строки, является достаточно легкой и простой.

    Существуют кроме того несколько графических оболочек, таких как Gnome-Boxes .

    Вывод

    Виртуализация – неотъемлемая часть современных корпоративных систем, она позволяет сэкономить колоссальные денежные и энергетические ресурсы. Развитие технологий виртуализации является приоритетным направлением многих организаций. Развиваются такие технологии как как VGAPassthrough (технология "проброса" видеокарты хост-устройства в виртуальную машину) и PCIPassthrough ("проброс" PCI устройства).

Поделитесь с друзьями или сохраните для себя:

Загрузка...